List of accepted papers:
- “Autoencoders, Unsupervised Learning, and Deep Atchitectures“, Pierre Baldi
- “Dyna Planning using a Feature Based Generative Model“, Ryan Faulkner, Doina Precup
- “Dynamic Auto-Encoders for Semantic Indexing”, Piotr Mirowski, Marc’Aurelio Ranzato, Yann LeCun
- “Deep Networks with Hierarchical Convolutional Factor Analysis”, Bo Chen, Guillermo Sapiro, David Dunson, Lawrence Carin
- “Modeling V1 and V2 by multinomial multilayer belief net“, Haruo Hosoya
- “Learning Continuous Phrase Representations and Syntactic Parsing with Recursive Neural Networks“, Richard Socher, Andrew Ng, Christopher Manning
- “Sum-Product Networks: A New Deep Architecture“, Hoifung Poon, Pedro Domingos
- “Mixture Models and Representational Power of RBM’s, DBN’s and DBM’s“, Guido Montufar
- “Investigating Convergence of Restricted Boltzmann Machine Learning“, Hannes Schulz, Andreas Mueller, Sven Behnke
- “Biasing Restricted Boltzmann Machines to Manipulate Latent Selectivity and Sparsity“, Hanlin Goh, Nicolas Thome and Matthieu Cord
- “Deep Self-Taught Learning for Handwritten Character Recognition“, Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger-Lewandowski, Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Côté, Dumitru Erhan, Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan Pascanu, Salah Rifai, François Savard, Guillaume Sicard
- “Rates-FPCD: A Better-Mixing Sampling Procedure for RBMs“, Olivier Breuleux, Yoshua Bengio, Pascal Vincent
- “Roles of Pre-Training and Fine-Tuning in Context-Dependent DBN-HMMs for Real-World Speech Recognition“, Dong Yu, Li Deng, George Dahl
- “Deep Sparse Rectifier Neural Networks“, Xavier Glorot, Antoine Bordes, Yoshua Bengio
- “Important Gains from Supervised Fine-Tuning of Deep Architectures on Large Labeled Sets“, Pascal Lamblin, Yoshua Bengio
- “A Probabilistic Model for Semantic Word Vectors“, Andrew Maas, Andrew Ng
- “On random weights and unsupervised feature learning” (supplementary material), Andrew Saxe, Pang Wei Koh, Zhenghao Chen, Maneesh Bhand, Bipin Suresh, Andrew Ng
- “Deep Learning of Invariant Spatio-Temporal Features from Video“, Bo Chen, Jo-Anne Ting, Benjamin Marlin, Nando de Freitas
- “Learning attentional mechanisms for simultaneous object tracking and recognition with deep networks”, Loris Bazzani, Nando de Freitas, Jo-Anne Ting
- “Multimodal Deep Learning“, Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, Andrew Ng
- “The spike and slab restricted Boltzmann machine“, Aaron Courville, James Bergstra, Yoshua Bengio
- “Adaptive Parallel Tempering for Stochastic Maximum Likelihood Learning of RBMs“, Guillaume Desjardins, Aaron Courville, Yoshua Bengio
- “An Analysis of Single-Layer Networks in Unsupervised Feature Learning“, Adam Coates, Honglak Lee, Andrew Ng
- “Deep Learning for Efficient Discriminative Parsing“, Ronan Collobert